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Abstract: There are various classes of problems in complexity theory also some mathematical precisely defined 

problems that cannot be solved by algorithms even for unlimited time. Yuri Matiyasevich and Alan Turing 

proved that no such algorithms exist to solve the halting problems.  Turing machines also called computing 

machines are not algorithms but they provide mathematical definition of objects so that one can prove their 

existence or none-existence. The unknown status of NP Complete problems is another failure story. Till now 

there is no algorithm discovered that can solve the NP complete problem in polynomial time also nobody has 

been able to prove that no polynomial-time algorithm exists for any of them. The interesting part is, if any NP 

complete is solved in polynomial time, and then all the NP complete problems can be solved in polynomial. In 

this paper we present a review on complexity theory, various problems’ classes etc. Then will discuss various 

terms related to complexity theory such as decision problems, function problems, Polynomial Problems, 

Exponential Problems, NP, NP Hard and NP-complete. 
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Introduction 
 

There are enormous computations methods are 

being used to solve complex problems such as 

Minimum spanning Tree, Euler graph, shortest path, 

and so on.  But is there solution exist for all 

mathematical problems? The answer is no. There are 

various mathematical problems such as analysis, 

logic, set theories and some diophantine equations 

which cannot be solved algorithm by even with 

unlimited time also called Hilbert’s Tenth problems. 

Similarly the status of class NP and NP complete 

problems is unknown.  

In this paper we will discuss computational 

complexity theory, various classes of computation 

problems, their properties and their relation. Then we 

will specifically give introduction to the class P, 

Exponential Problems, NP and NP complete 

problems. Then we will investigate computation 

model for each class, examples of each class 

problems. We will also discuss various applications 

and importance of these problems in computation 

theory. 

    

Computational Complexity Theory 
 

In computer science theory, the computational 

complexity theory is that branch which classifies 

problems into various classes based on their 

difficulty and relation among them. By using 

whatever algorithm, the difficulty of a problem is 

inherently measured based on resource required for 

solution [16]. Times, space, amount of 

communication and so on are the resources needed to 

find problems solutions used by algorithm. Based on 

complexity of the problem, we define complexity 

classes [16].  In this section we describe various 

complexity classes. 

 

Decision problems 
 

These problems are also called formal languages. 

In complexity theory, a decision problem is a special 

problem which gives yes or no. The objective is to 

decide, if an input string is in the language and 

decider algorithm return yes, the algorithm accept it 

otherwise reject the input string [16].  
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Figure 01: Decision Problem’s Algorithm 

 

A. Function problems 

 

These are computational problems where for 

every input, a single output is expected and the 

output is more complex than decision problem’s 

output i.e. the output is not only yes or no. 

Examples include traveling salesman problem and 

the number factorization problem. 

B. Polynomial problem (p) 

It contains all those languages or problems that we 

can solve in reasonable amount of time or in 

practical time actually in polynomial time. If an 

algorithm solve a problem in polynomial time i.e. T 

(n) = O(nc), then it is called class P,  PTIME 

or  DTIME(nO(1)) problems (polynomial problem) 

where c is a positive constant. Formal definition of 

class P problem is: 

Def: A language L1 is in class P if and only if 

there exist a Deterministic Turing Machine (DTM) 

M, such that [16] 

 “M runs for polynomial time on all inputs 

 For all x in L, M outputs 1 

 For all x not in L, M outputs 0”  

 Examples include the following: 

a. Binary search tree = O(n log n) 

b. Depth-first search/Breath-first search. 

c. Sorting: O(n log n) = O(n2) 

d. Calculating maximum matching. 

e. All-pairs shortest path: O(n3) 

f. Finding greatest common divisor. 

g. Minimum spanning tree: (E log E)= O(E2) 

 

Consider we have a list of integers and we want to 

display the smallest number in the list using an 

algorithm.  One method is the iteration, examine the 

entire integer in the list and keep track of the smallest 

number we have seen up to that point.  Every time 

we look at number, we compare it to the current 

smallest number, and if it is smaller, we update the 

smallest number variable. What will be computation 

time?  If there are m elements in the list, the 

algorithm performs a constant number of operation 

i.e. the algorithm runs in O(m) time, or that the 

running time is a linear function. So this algorithm 

runs in linear time. Similarly there are various 

algorithms that required quadratic O(n2), or 

exponential O(2n) or even logarithmic time (O(log 

n)) and so many.   

In short, if the computation time of an algorithm 

to solve a problem is, for instance linear time or 

quadratic time or cubic time, then we can say that 

problem is in class P, because time required for 

algorithms decision is polynomial time [1]. 

 

D. Exponential problems (e) 

Exponential problems are those if it is impossible 

to develop polynomial-time algorithms for them. 

And an algorithm solve in O (n v(n)), where if n goes 

to infinity then v(n) also goes to infinity. In 

exponential context we can divide computation 

problems into the following classes: 

a. Polynomial  (P) 

b. Exponential (E) 

c. Undecidable or Intractable (I) 

 

Now we turn to very important and large class of 

computational complexity theory, the class NP. By 

analyzing, we can conclude the following. 

1. How the problems solve exponentially, 

2. We don't know how will the problems solve 

in polynomial time, and 

3. We are not sure if the problems can be 

solved in polynomial time at all. 

 

The Nondeterministically Polynomial (Class 

NP) is a gray/unexplored area between class P 

and the class E. We discuss it in the following 

section.  

 

E. Nondeterministically Polynomial 

problems (np) 

 Definition No. 1 of NP  

If there exist a nondeterministic Turing Machine 

and it can solve the problem in a polynomial 

number of nondeterministic moves then the 

problem is said to be class NP problems. A 

language ‘L’ is in class NP if a nondeterministic 

Turing machine M’ decides it in polynomial 

time that is M’ runs in dnk . 

 

 Definition No. 2 of NP  

A class NP problem is a problem whose solution 

belongs to a finite set of possibilities and to find 

the correctness of candidate solution, 

polynomial time is required. Clearly, the class P 

is the subset of NP i.e. P ⊆  NP. If a problem is 
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solved in polynomial time by deterministic 

Turing machine then that problem is also 

solvable by non-deterministic Turing Machine in 

polynomial time [19]. Informally, we can say the 

NP is the set of decision problems which a 

“Lucky Algorithm” solved in polynomial time 

and makes a right choice from a set of known 

choices. 

 

 Definition No. 3 of NP  

A problem is in class NP if there exists non-

deterministic polynomial algorithm to solve it. 

Or we can say that a problem L is in NP if 

and only if there exists a polynomial time 

verification algorithm for L.     

Examples:  

The Hamiltonian Cycle (HC) problem:  

1. Input is a graph.  

2. Does G have a Hamiltonian Cycle? 

This problem can be solved by the 

following NP algorithm. 

 

Hamiltonian_CycleP ( G,V ) 

 
   1. Begin 

   2. /* This loop is for 

guessing*/ 

   3.    for i  1 to n  

   4.      do  

   5.     X[i] : = select(i);  

         /* select()is an imaginary,  
                 non-implementable   

                 instruction */ 

             

   6.       end_of_for 

 

 

   /* verification stage */ 

   7.       for i   1 to n 

   8.      for j  i+1 to n do  

   9.       if X[i] = X[j] then 

  10.           return (no); 

  11.             end_if  

  12.             end_for  

  13.              end_for  

    

  14.     for i   1 to n-1 do  

  15. if(X[i],X[i+1])is not an edge  

             then 

  16.              return(no); 

  17.                 end_if  

  18.                 end_for loop  

  19.     if (X[n],X[1]) is not an 

edge  

            then 

  20.            return(no); 

  21.              End_if  

 

  22.            return(yes); 

  23.                End 

  

     If we analyze the above algorithm, we see that the 

size is O(n), and the computation time of the 

verification stage is O(n2). It shows that the solution 

time is polynomial and non-deterministic algorithm 

solves the HC problem. Therefore the HC problem is 

an NP problem.  

  

Similarly an example of the NP problem is the K-

clique problem.  

 

1. The input is a graph G and an integer k. 

2. Question: Does G has a k-clique? 

A non-deterministic algorithm for the k-clique 

problem is as: 

 

                      K_CLIQUEP (G,k) 
 

1. Begin 
   /* this loop represents 

the guessing stage*/ 

   

2. for i  1 to k  
3.    do  
4.        X[i] := select(i); 
5.          End_for 

 

   /* verification stage is 

as follows */ 

6.   for i   1 to k do  
7.   for  j   i+1 to k do  
8.  if (X[i] = X[j] or 

(X[i],X[j])   

   is not an edge  

9.      Then 
10.      return(no); 

11.        end_if   

12.    end_for  

13.     end_for  

14.      return(yes); 

15. End 

By analyzing the above algorithm, we get that the 

solution size of k-clique is O(k) i.e. O(n), and 

computation time for the verification stage is O(n2) 

and the algorithm is non-deterministic. Therefore this 

is an NP problem. 

In computation complexity theory there are 

problems which can be solved by polynomial time by 

programs or algorithms but these programs or 
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algorithms don’t run in polynomial time on a regular 

computer, but run in polynomial time on a 

nondeterministic Turing machine.  The problems 

solved by these programs are in class in NP so 

nondeterministic Turing machine can perform 

everything as a regular computer can. It means that 

all problems in class P are also in class NP.  

Is P = NP? It means that if a problem is solved in 

polynomial time can also be verified in polynomial 

time, and vice versa. It is $ 1, 000, 000 prize   

question in complexity theory offered by Clay 

Mathematical Institute [1].  If someone could prove 

this, it would be a revolution in the field of computer 

science because it will enable us to construct 

efficient algorithms for more complicated and 

important problems [1]. 

 

F. NP-Hard Problems 

 In computational complexity theory informally, 

NP-hard is a class of problems that are the hardest 

problems in NP. In many cases, we may solve a 

given problem by reducing it to another 

problem. More specifically, a Problem P is NP-hard 

when every problem A is NP can be reduced in 

polynomial problem to P [17]. As a result, if we find 

a polynomial algorithm to solve any NP-hard 

problem, it means that there are polynomial 

algorithms to solve all the NP problems, “which is 

unlikely as many of them are considered hard” [18]. 

This means if we can solve NP-hard problem, then 

any problem in NP can be solved 

easily. Consequently this would prove P = NP. 

NP-hard problems frequently deal with rules-

based languages in many areas including 

[20]:””’”””” 

 Approximate Computing 

 Cryptography 

 Data mining 

 Decision support 

 Planning 

 Process monitoring and control 

 Routing/vehicle routing 

 Scheduling 

 Selection 

 Tutoring systems”   “ 

In computation process, there are some problems 

for which the fast solutions are impossible. To solve 

these problems we translate a problem to another and 

then find fast solution. In NP-class for some 

problems, if every single problem is translated then 

automatically fast solution to such a problem would 

give a fast solution to every problem in NP. Such 

types of problems are in NP-hard class. Also there 

are some NP-hard problems that are actually not in 

NP.  

G. NP-Completeness (NPC) 

In complexity theory, if a problem is both NP and 

NP-hard then such group of decision problems is 

called NP-complete denoted by NPC-class. These are 

the hardest problems in NP set.  Let B is a decision 

problem, then B is in class NPC if it satisfies the 

conditions below: 

1) B is in NP (NP-complete problems can 

be verified quickly for any given 

solution, but no efficient well-defined 

algorithm exists for solution). 

2)  Every problem in NP set can be reduced 

to B in polynomial time. 

Although the known solution of NP-complete 

problems can be verified in polynomial time but at 

the first place, there is no efficient method for NPC 

problems solution. Indeed, it is the most 

distinguished characteristic of NP-complete 

problems. It means that to solve the problems by 

using current algorithms, the computation time 

increases very quickly with the increase of problem 

sizes [20]. 

To prove that a problem may in NP-complete, first 

we prove that the problem is in NP, and then reduce 

some known NP-complete problem to it. There a 

variety of well known NP-complete problems. Some 

of these are shown in the following list. 

 Boolean satisfiability  (SAT) 

 Travelling salesman (decision version) 

 Sub-graph isomorphism 

 Hamiltonian 

 Subset sum 

 Clique  

 Independent set 

 Dominating set problem 

 Knapsack 

 Vertex cover problem 

 

H. optimization problems 

Unlike decision problem that gives us one correct 

result for each input either yes or no, the 

optimization problem deals with best answer for a 
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particular input. Naturally the optimization problem 

arises in many areas such as travelling salesman 

problem and linear programming [21]. Many 

standard tools are used to translate function and 

optimization problems into decision problems. 

Suppose, in the salesman problem, the optimization 

problem is to construct a tour with nominal weight. 

The related decision problem is: for each M, to 

decide whether the graph has any tour with weight 

less than M. By repeatedly answering the decision 

problem, it is possible to find the minimal weight of 

a tour [21].  

Reduction 

In computation theory, a reduction is the process 

of transforming one problem into other. The purpose 

of reduction algorithm is to prove that the second 

problem is at least as difficult as the first one. Let 

L1 and L2 are the two decision problems. From the 

figure 2, we see that x is an input for L1, inside 

algorithm for L1, the transform function f translate 

input x to f(x), input for the L2 algorithm and 

produce yes/no based on f(x). This is also the result 

for L1. The idea of reduction algorithm is to find a 

transformation from L1 to L2. 

 

 

 

 

  

Figure: 02 Reductions L1 to L2 

Reduction algorithm plays very important in 

computational theory. If we have already solved 

problem then by reducing a new problem to an 

existing one will save a lot of computation work. 

Suppose if a directed graph is given and we want to 

find minimum product path, where path is the 

multiplication of weights of edges along the path. If 

an algorithm for Dijkstra’s algorithm for shortest 

path already exists, then we take log of all weights 

existing Dijkstra’s algorithm to find the minimum 

product path  there is no need to write new code. 

Relation among the classes 

The following figure shows the relationship of 

various computational complexity classes: 

 

 

 

 
 

 

 Conclusion and future work 

This paper discussed various aspects of 

computation complexity classes. The purpose of this 

study is to find efficient algorithms to solve problems 

using tricky methods and techniques and avoid the 

process of the tedious and exhaustive search, with 

the help of the hints from the input in order to reduce 

and minimize the search space significantly [7]. For 

every NP-complete problem there exist some 

algorithm to solve but exponentially and on the cost 

of multiple resources hunting such as time and space. 

There are some problems which are still no 

computable or undecidable such as halting problems 

or Helbert’s Tenth problems.  Mathematicians and 

researchers are continuously trying to explore fast 

and efficient algorithms and a problem will be 

unsolvable today but tomorrow may turn to be solved 

efficiently. Actually NP is a class of decision 

problems. Though one may informally talk about 

some problems being in NP, actually that doesn't 

make much sense, they are not decision problems. 

Some of these problems might even have the same 

sort of power as an NP-complete problem. An 

efficient solution to these (non-decision) problems 

would lead directly to an efficient solution to any NP 

problem. 
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