
International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 281
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

A Review on Computational Complexity
Theory and Classes of Problems

Hussain Ahmad

Higher Education Department (Commerce Wing). KPK Peshawar, +923469361048,

hussainternow@gmail.com

Abstract: There are various classes of problems in complexity theory also some mathematical precisely defined

problems that cannot be solved by algorithms even for unlimited time. Yuri Matiyasevich and Alan Turing

proved that no such algorithms exist to solve the halting problems. Turing machines also called computing

machines are not algorithms but they provide mathematical definition of objects so that one can prove their

existence or none-existence. The unknown status of NP Complete problems is another failure story. Till now

there is no algorithm discovered that can solve the NP complete problem in polynomial time also nobody has

been able to prove that no polynomial-time algorithm exists for any of them. The interesting part is, if any NP

complete is solved in polynomial time, and then all the NP complete problems can be solved in polynomial. In

this paper we present a review on complexity theory, various problems’ classes etc. Then will discuss various

terms related to complexity theory such as decision problems, function problems, Polynomial Problems,

Exponential Problems, NP, NP Hard and NP-complete.

Keywords: Class P, NP-completeness, polynomial, algorithm, optimization.

Introduction

There are enormous computations methods are

being used to solve complex problems such as

Minimum spanning Tree, Euler graph, shortest path,

and so on. But is there solution exist for all

mathematical problems? The answer is no. There are

various mathematical problems such as analysis,

logic, set theories and some diophantine equations

which cannot be solved algorithm by even with

unlimited time also called Hilbert’s Tenth problems.

Similarly the status of class NP and NP complete

problems is unknown.

In this paper we will discuss computational

complexity theory, various classes of computation

problems, their properties and their relation. Then we

will specifically give introduction to the class P,

Exponential Problems, NP and NP complete

problems. Then we will investigate computation

model for each class, examples of each class

problems. We will also discuss various applications

and importance of these problems in computation

theory.

Computational Complexity Theory

In computer science theory, the computational

complexity theory is that branch which classifies

problems into various classes based on their

difficulty and relation among them. By using

whatever algorithm, the difficulty of a problem is

inherently measured based on resource required for

solution [16]. Times, space, amount of

communication and so on are the resources needed to

find problems solutions used by algorithm. Based on

complexity of the problem, we define complexity

classes [16]. In this section we describe various

complexity classes.

Decision problems

These problems are also called formal languages.

In complexity theory, a decision problem is a special

problem which gives yes or no. The objective is to

decide, if an input string is in the language and

decider algorithm return yes, the algorithm accept it

otherwise reject the input string [16].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 282
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Figure 01: Decision Problem’s Algorithm

A. Function problems

These are computational problems where for

every input, a single output is expected and the

output is more complex than decision problem’s

output i.e. the output is not only yes or no.

Examples include traveling salesman problem and

the number factorization problem.

B. Polynomial problem (p)

It contains all those languages or problems that we

can solve in reasonable amount of time or in

practical time actually in polynomial time. If an

algorithm solve a problem in polynomial time i.e. T

(n) = O(nc), then it is called class P, PTIME

or DTIME(nO(1)) problems (polynomial problem)

where c is a positive constant. Formal definition of

class P problem is:

Def: A language L1 is in class P if and only if

there exist a Deterministic Turing Machine (DTM)

M, such that [16]

 “M runs for polynomial time on all inputs

 For all x in L, M outputs 1

 For all x not in L, M outputs 0”

 Examples include the following:

a. Binary search tree = O(n log n)

b. Depth-first search/Breath-first search.

c. Sorting: O(n log n) = O(n2)

d. Calculating maximum matching.

e. All-pairs shortest path: O(n3)

f. Finding greatest common divisor.

g. Minimum spanning tree: (E log E)= O(E2)

Consider we have a list of integers and we want to

display the smallest number in the list using an

algorithm. One method is the iteration, examine the

entire integer in the list and keep track of the smallest

number we have seen up to that point. Every time

we look at number, we compare it to the current

smallest number, and if it is smaller, we update the

smallest number variable. What will be computation

time? If there are m elements in the list, the

algorithm performs a constant number of operation

i.e. the algorithm runs in O(m) time, or that the

running time is a linear function. So this algorithm

runs in linear time. Similarly there are various

algorithms that required quadratic O(n2), or

exponential O(2n) or even logarithmic time (O(log

n)) and so many.

In short, if the computation time of an algorithm

to solve a problem is, for instance linear time or

quadratic time or cubic time, then we can say that

problem is in class P, because time required for

algorithms decision is polynomial time [1].

D. Exponential problems (e)

Exponential problems are those if it is impossible

to develop polynomial-time algorithms for them.

And an algorithm solve in O (n v(n)), where if n goes

to infinity then v(n) also goes to infinity. In

exponential context we can divide computation

problems into the following classes:

a. Polynomial (P)

b. Exponential (E)

c. Undecidable or Intractable (I)

Now we turn to very important and large class of

computational complexity theory, the class NP. By

analyzing, we can conclude the following.

1. How the problems solve exponentially,

2. We don't know how will the problems solve

in polynomial time, and

3. We are not sure if the problems can be

solved in polynomial time at all.

The Nondeterministically Polynomial (Class

NP) is a gray/unexplored area between class P

and the class E. We discuss it in the following

section.

E. Nondeterministically Polynomial

problems (np)

 Definition No. 1 of NP

If there exist a nondeterministic Turing Machine

and it can solve the problem in a polynomial

number of nondeterministic moves then the

problem is said to be class NP problems. A

language ‘L’ is in class NP if a nondeterministic

Turing machine M’ decides it in polynomial

time that is M’ runs in dnk .

 Definition No. 2 of NP

A class NP problem is a problem whose solution

belongs to a finite set of possibilities and to find

the correctness of candidate solution,

polynomial time is required. Clearly, the class P

is the subset of NP i.e. P ⊆ NP. If a problem is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 283
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

solved in polynomial time by deterministic

Turing machine then that problem is also

solvable by non-deterministic Turing Machine in

polynomial time [19]. Informally, we can say the

NP is the set of decision problems which a

“Lucky Algorithm” solved in polynomial time

and makes a right choice from a set of known

choices.

 Definition No. 3 of NP

A problem is in class NP if there exists non-

deterministic polynomial algorithm to solve it.

Or we can say that a problem L is in NP if

and only if there exists a polynomial time

verification algorithm for L.

Examples:

The Hamiltonian Cycle (HC) problem:

1. Input is a graph.

2. Does G have a Hamiltonian Cycle?

This problem can be solved by the

following NP algorithm.

Hamiltonian_CycleP (G,V)

 1. Begin

 2. /* This loop is for

guessing*/

 3. for i 1 to n

 4. do

 5. X[i] : = select(i);

 /* select()is an imaginary,
 non-implementable

 instruction */

 6. end_of_for

 /* verification stage */

 7. for i 1 to n

 8. for j i+1 to n do

 9. if X[i] = X[j] then

 10. return (no);

 11. end_if

 12. end_for

 13. end_for

 14. for i 1 to n-1 do

 15. if(X[i],X[i+1])is not an edge

 then

 16. return(no);

 17. end_if

 18. end_for loop

 19. if (X[n],X[1]) is not an

edge

 then

 20. return(no);

 21. End_if

 22. return(yes);

 23. End

 If we analyze the above algorithm, we see that the

size is O(n), and the computation time of the

verification stage is O(n2). It shows that the solution

time is polynomial and non-deterministic algorithm

solves the HC problem. Therefore the HC problem is

an NP problem.

Similarly an example of the NP problem is the K-

clique problem.

1. The input is a graph G and an integer k.

2. Question: Does G has a k-clique?

A non-deterministic algorithm for the k-clique

problem is as:

 K_CLIQUEP (G,k)

1. Begin
 /* this loop represents

the guessing stage*/

2. for i 1 to k
3. do
4. X[i] := select(i);
5. End_for

 /* verification stage is

as follows */

6. for i 1 to k do
7. for j i+1 to k do
8. if (X[i] = X[j] or

(X[i],X[j])

 is not an edge

9. Then
10. return(no);

11. end_if

12. end_for

13. end_for

14. return(yes);

15. End

By analyzing the above algorithm, we get that the

solution size of k-clique is O(k) i.e. O(n), and

computation time for the verification stage is O(n2)

and the algorithm is non-deterministic. Therefore this

is an NP problem.

In computation complexity theory there are

problems which can be solved by polynomial time by

programs or algorithms but these programs or

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 284
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

algorithms don’t run in polynomial time on a regular

computer, but run in polynomial time on a

nondeterministic Turing machine. The problems

solved by these programs are in class in NP so

nondeterministic Turing machine can perform

everything as a regular computer can. It means that

all problems in class P are also in class NP.

Is P = NP? It means that if a problem is solved in

polynomial time can also be verified in polynomial

time, and vice versa. It is $ 1, 000, 000 prize

question in complexity theory offered by Clay

Mathematical Institute [1]. If someone could prove

this, it would be a revolution in the field of computer

science because it will enable us to construct

efficient algorithms for more complicated and

important problems [1].

F. NP-Hard Problems

 In computational complexity theory informally,

NP-hard is a class of problems that are the hardest

problems in NP. In many cases, we may solve a

given problem by reducing it to another

problem. More specifically, a Problem P is NP-hard

when every problem A is NP can be reduced in

polynomial problem to P [17]. As a result, if we find

a polynomial algorithm to solve any NP-hard

problem, it means that there are polynomial

algorithms to solve all the NP problems, “which is

unlikely as many of them are considered hard” [18].

This means if we can solve NP-hard problem, then

any problem in NP can be solved

easily. Consequently this would prove P = NP.

NP-hard problems frequently deal with rules-

based languages in many areas including

[20]:””’””””

 Approximate Computing

 Cryptography

 Data mining

 Decision support

 Planning

 Process monitoring and control

 Routing/vehicle routing

 Scheduling

 Selection

 Tutoring systems” “

In computation process, there are some problems

for which the fast solutions are impossible. To solve

these problems we translate a problem to another and

then find fast solution. In NP-class for some

problems, if every single problem is translated then

automatically fast solution to such a problem would

give a fast solution to every problem in NP. Such

types of problems are in NP-hard class. Also there

are some NP-hard problems that are actually not in

NP.

G. NP-Completeness (NPC)

In complexity theory, if a problem is both NP and

NP-hard then such group of decision problems is

called NP-complete denoted by NPC-class. These are

the hardest problems in NP set. Let B is a decision

problem, then B is in class NPC if it satisfies the

conditions below:

1) B is in NP (NP-complete problems can

be verified quickly for any given

solution, but no efficient well-defined

algorithm exists for solution).

2) Every problem in NP set can be reduced

to B in polynomial time.

Although the known solution of NP-complete

problems can be verified in polynomial time but at

the first place, there is no efficient method for NPC

problems solution. Indeed, it is the most

distinguished characteristic of NP-complete

problems. It means that to solve the problems by

using current algorithms, the computation time

increases very quickly with the increase of problem

sizes [20].

To prove that a problem may in NP-complete, first

we prove that the problem is in NP, and then reduce

some known NP-complete problem to it. There a

variety of well known NP-complete problems. Some

of these are shown in the following list.

 Boolean satisfiability (SAT)

 Travelling salesman (decision version)

 Sub-graph isomorphism

 Hamiltonian

 Subset sum

 Clique

 Independent set

 Dominating set problem

 Knapsack

 Vertex cover problem

H. optimization problems

Unlike decision problem that gives us one correct

result for each input either yes or no, the

optimization problem deals with best answer for a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 285
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

particular input. Naturally the optimization problem

arises in many areas such as travelling salesman

problem and linear programming [21]. Many

standard tools are used to translate function and

optimization problems into decision problems.

Suppose, in the salesman problem, the optimization

problem is to construct a tour with nominal weight.

The related decision problem is: for each M, to

decide whether the graph has any tour with weight

less than M. By repeatedly answering the decision

problem, it is possible to find the minimal weight of

a tour [21].

Reduction

In computation theory, a reduction is the process

of transforming one problem into other. The purpose

of reduction algorithm is to prove that the second

problem is at least as difficult as the first one. Let

L1 and L2 are the two decision problems. From the

figure 2, we see that x is an input for L1, inside

algorithm for L1, the transform function f translate

input x to f(x), input for the L2 algorithm and

produce yes/no based on f(x). This is also the result

for L1. The idea of reduction algorithm is to find a

transformation from L1 to L2.

Figure: 02 Reductions L1 to L2

Reduction algorithm plays very important in

computational theory. If we have already solved

problem then by reducing a new problem to an

existing one will save a lot of computation work.

Suppose if a directed graph is given and we want to

find minimum product path, where path is the

multiplication of weights of edges along the path. If

an algorithm for Dijkstra’s algorithm for shortest

path already exists, then we take log of all weights

existing Dijkstra’s algorithm to find the minimum

product path there is no need to write new code.

Relation among the classes

The following figure shows the relationship of

various computational complexity classes:

 Conclusion and future work

This paper discussed various aspects of

computation complexity classes. The purpose of this

study is to find efficient algorithms to solve problems

using tricky methods and techniques and avoid the

process of the tedious and exhaustive search, with

the help of the hints from the input in order to reduce

and minimize the search space significantly [7]. For

every NP-complete problem there exist some

algorithm to solve but exponentially and on the cost

of multiple resources hunting such as time and space.

There are some problems which are still no

computable or undecidable such as halting problems

or Helbert’s Tenth problems. Mathematicians and

researchers are continuously trying to explore fast

and efficient algorithms and a problem will be

unsolvable today but tomorrow may turn to be solved

efficiently. Actually NP is a class of decision

problems. Though one may informally talk about

some problems being in NP, actually that doesn't

make much sense, they are not decision problems.

Some of these problems might even have the same

sort of power as an NP-complete problem. An

efficient solution to these (non-decision) problems

would lead directly to an efficient solution to any NP

problem.

References

1. Jessica Su, Stanford University, retrieved

from www.quora.com. Dated 20/12/2016

2. Radoslaw Hofman, Poznan, “Why LP cannot

solve large instances of NP-complete

problems in polynomial time”, 2006.

3. Cook S.A., “The complexity of theorem-

proving procedures”, Proceedings of the third

annual ACM symposium on Theory of

computing, 1971, pp. 151-158.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 5, May-2021 286
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

4. Diaby M., “On the Equality of Complexity

Classes P and NP: Linear Programming

Formulation of the Quadratic Assignment

Problem.”, Proceedings of the International

Multi Conference of Engineers and Computer

Scientists 2006, IMECS '06, June 20-22,

2006, Hong Kong, China, ISBN 988-98671-

3-3.

5. Scott Fortin, “The Graph Isomorphism

Problem, Technical Report”,S TR 96-20

Department of Computer Science, The

University of Alberta Edmonton, Alberta,

Canada, July 1996.

6. Lance Fortnow, "The Status of the P Versus

NP Problem," Communications of the ACM,

Vol. 52 No. 9, Pages 78-86, September 2009.

7. www.cs.berkeley.edu/~vazirani/algorith

ms/chap8.pdf
8. Rene Peeters, “The maximum edge biclique

problem is NP-complete”, Department of

Econometrics and Operations Research,

Tilburg University, Tilburg, 5000 LE, The

Netherlands, 2003.

9. D.S. Hochbaum, “Approximating clique and

biclique problems”, J. Algorithms 29 (1)

(1998) 174–200.

10. D.S. Johnson, “The NP-completeness

column: an ongoing guide”, J. Algorithms 8

(3) (1987) 438–448.

11. M. Yannakakis, “Node- and edge-deletion

NP-complete problems”, Proceedings of the

10th Annual ACM Symposium on Theory of

Computing, Association for Computing

Machinery, New York, 1978, pp. 253–264.

12. Radoslaw Hofman, “Why LP cannot solve

large instances of NP-complete problems in

polynomial time”, Paznan2006.

13. Karmarkar, N., “A new polynomial-time

algorithm for linear programming,”

Combinatorica 4, (1984) pp. 373-395.

14. Khachiyan, L.G., “Polynomial algorithm in

linear programming,”, Soviet Mathematics

Doklady 20, (1979) pp. 191-194.

15. Yannakakis, M., “Expressing Combinatorial

Optimization Problems by Linear Programs”,

Journal of Computer and System Sciences 43

(1991) pp. 441-466.

16. Computational complexity theory, Wikipedia,

visited date: 20/01/2017

17. Leeuwen, Jan van, Handbook of Theoretical

Computer Science. Vol. A, “Algorithms and

complexity”. Amsterdam:

Elsevier. ISBN 0262720140, ed. (1998).

18. Daniel Pierre Bovet; Pierluigi

Crescenzi. “Introduction to the Theory of

Complexity”. Prentice Hall. p. 69. ISBN 0-

13-915380-2.

19. PHYS771 Lecture 6: “P, NP, and

Friends". www.scottaaronson.com.

Retrieved 10-01-2017.

20. “NP Hardness”, Wikipedia, visited date:

20/01/2017

21. “Decision Problems”, Wikipedia, visited

date: 20/01/2017

IJSER

http://www.ijser.org/
http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf%E2%80%8E
http://www.cs.berkeley.edu/~vazirani/algorithms/chap8.pdf%E2%80%8E
https://en.wikipedia.org/wiki/Jan_van_Leeuwen
http://www.worldcat.org/title/algorithms-and-complexity/oclc/247934368/viewport
http://www.worldcat.org/title/algorithms-and-complexity/oclc/247934368/viewport
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0262720140
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-915380-2
https://en.wikipedia.org/wiki/Special:BookSources/0-13-915380-2

